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This paper involves a numerical simulation of the final stages of transition to 
turbulence in plane channel flow a t  a Reynolds number of 1500. Three-dimensional 
incompressible Navier-Stokes equations are numerically integrated to  obtain the 
time evolution of two- and three-dimensional finite-amplitude disturbances. Com- 
putations are performed on the CYBER-203 vector processor for a 32 x 51 x 32 grid. 
Solutions indicate the existence of structures similar to those observed in the 
laboratory and characteristic of the various stages of transition that lead to final 
breakdown. I n  particular, evidence points to the formation of a A-shaped vortex 
and the subsequent system of horsehoe vortices inclined to the main flow direction 
as the .primary elements of transition. Details of the resulting flow field after 
breakdown indicate the evolution of streaklike formations found in turbulent flows. 
Although the flow field does approach a steady state (turbulent channel flow), the 
introduction of subgrid-scale terms seems necessary to obtain fully developed 
turbulence statistics. 

1. Introduction 
Recent experiments by Nishioka, Asai & Iida (1981) have shown that transition 

to turbulence in plane channel flow follows a sequence of events similar to  that 
observed by Klebanoff, Tidstrom & Sargent ( 1962) in the boundary-layer transition. 
I n  this work, a direct numerical integration of the Navier-Stokes equations is 
performed in an attempt to simulate these events in plane channel flow, during the 
later stages of transition. 

I n  their experiments, Nishioka et al. (1981) used a vibrating ribbon technique to 
generate two-dimensional disturbances fixed a t  72 Hz to excite the fully developed 
flow in a channel with a 27.4 aspect ratio. They measured the streamwise mean and 
fluctuating velocities, U ,  and u; respectively, at a fixed streamwise location at a 
subcritical (linearly stable) Reynolds number R e  = 5000, and simulated the various 
stages of transition by varying the disturbance amplitude. Their observations show 
that subcritical instability takes place a t  a threshold amplitude of ( U ~ ) ~ J U ,  = 0.01, 
where U, is the mean velocity a t  the channel centreline. The evolution of this 
instability is evidenced by the intensification of the spanwise variation of the 
wavefront, which develops into a peak-valley structure. Nishioka et al. (1981) 
observed that the flow development then follows a trend which is similar to transition 
in the boundary layer (Klebanoff et al. 1962 ; Kovasznay, Komoda & Vasudeva 1962) : 
local shear layers are formed away from the wall a t  spanwise peak positions 
(ui/ U, = 0.06) ; these shear layers start to exhibit a ‘kink ’, which is the manifestation 
of secondary instability and is accompanied by a ‘spike’ in the ui signal 
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(u i /U ,  = 0.11). In  rapid succession, two-, three-, five-, and multispike stages are 
observed with increasing amplitude of the primary disturbance. Nishioka et al. (1981) 
present evidence that in the final stages of transition the flow starts to develop 
structures very similar to those found in fully developed wall turbulence. During this 
stage the flow field is characterized by the development of a viscous sublayer, 
occurrence of the typical ‘streaks’ close to the wall, and the formation of horseshoe 
vortices sometimes referred to as the building blocks of wall turbulence (Theodorsen 
1954). The present work attempts to simulate this sequence of events. 

Direct numerical integrations of the Navier-Stokes equations for the simulation 
of channel-flow transition has been the subject of some previous investigations. 
George & Hellums (1972) and Fasel, Bestek & Schefenacker (1977) used the 
two-dimensional Navier-Stokes equations to investigate the stability of channel flow 
to two-dimensional finite-amplitude disturbances. George & Hellums studied the 
relationship between critical amplitude and Reynolds number and found a minimum 
Reynolds number Re = 3500 below which their predictions remained stable. This is 
contrary to experimental evidence (e.g. Kao & Park 1970), which indicates instability 
of plane channel flow to finite-amplitude disturbances a t  Reynolds numbers as low 
as 1000. Fasel et al. investigated the effects of disturbance amplitude on transition 
a t  subcritical and supercritical Reynolds numbers. They found that increasing 
amplitude (ui/ U, = 0.06) of two-dimensional disturbances can drive plane channel 
flow to instability a t  a subcritical Reynolds number Re = 5000. Although some 
insight into finite-amplitude instability of two-dimensional disturbances can be 
obtained from such calculations, a proper simulation of the transition process requires 
the use of the three-dimensional Navier-Stokes equations. Once the process extends 
into the nonlinear regime, transition becomes increasingly three-dimensional, so that, 
for a realistic (physically plausible) representation of flow breakdown, spanwise 
variations of the flow-field variables must be accounted for. It is also well known that 
creation of vorticity through vortex stretching, an essential ingredient of transition, 
can take place only in a three-dimensional flow field. Hence numerical solutions of 
the two-dimensional Navier-Stokes equations cannot represent energy transfer down 
the wavenumber spectrum, which i s  the basic mechanism of laminar-flow transition 
to turbulence and the result of the vortex-stretching mechanism. 

Effects of three-dimensionality on transition have first been documented in detail 
by Klebanoff et al. (1962). Accordingly, three-dimensionality manifests itself mainly 
in the spanwise velocity variations, resulting in the production of streamwise 
vorticity, which in turn interacts with the spanwise vorticity and drives the flow to 
breakdown. Orszag & Kells (1980) and Orszag & Patera (1981) have expanded on this 
idea and studied the susceptibility of plane channel flow to three-dimensional 
disturbances by numerically integrating the three-dimensional Navier-Stokes equa- 
tions. Their computations at subcritical Reynolds numbers revealed some interesting 
aspects of subcritical transition. They found that initial disturbances, which are 
finite-amplitude two-dimensional Orr-Sommerfeld eigensolutions, decay slowly, and, 
as expected, the rate of decay increases with decreasing Reynolds number. They also 
found that the addition of three-dimensional finite-amplitude disturbances promotes 
rapid instability at Reynolds numbers as low as 1000, which is in good agreement 
with the experiments of Kao & Park (1970). Their results suggest a similar tendency 
of the flow to instability even for small-amplitude three-dimensional disturbances. 
They conclude that the mechanism that drives plane channel flow to instability is 
the interaction of two-dimensional and three-dimensional disturbances, supporting 
the idea that three-dimensionality is central to transition in plane channel flow. More 
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recently, Kleiser ( 1982) incorporated a spectral method to solve the three-dimensional 
Navier-Stokes equations starting with weakly three-dimensional initial conditions. 
Comparisons of his results with the experiments of Nishioka, Asai & Iida (1980) up 
to the first-spike stage are favourable even from a quantitative point of view, 
supporting the idea that direct numerical simulations can be used as a means of 
investigating the nonlinear transition process. 

In  spite of the accumulation of theoretical and experimental information on 
transition, ambiguities still remain concerning the nature of nonlinear mechanisms 
prior to breakdown. The relation between streamwise vortices and spanwise vorticity 
is one such area that deserves attention. Based on Theodorsen’s (1954) vortex model, 
experimental observations of Hama & Nutant (1963) in a transitional boundary layer 
and recent flow-visualization studies (Head & Bandyopadhyay 1981 ; Perry, Lim & 
Teh 1981 ; Smith & Schwartz 1983), streamwise and spanwise vorticity can be viewed 
as parts of a vortex loop that evolves into a horseshoe vortex during the final stages 
of transition. This view implies that  streamwise vortices originate from the vortex- 
shedding mechanism owing to the nonlinear distortions of the initially two- 
dimensional spanwise vorticity. I n  contrast, according to the Benney-Lin ( 1960) 
theory, nonlinear distortions of the wavefront are initiated by a pair of counterrotating 
streamwise vortices which are present in the flow field. I n  addition to this problem, 
other essential queries concerning the mechanism of generation of a turbulent spot 
and its relation to wall turbulence remain as areas that need further study. 

It can be conjectured from the above discussion that our understanding of 
nonlinear mechanisms of transition and breakdown is not yet complete. The necessity 
of further work in this direction is especially apparent in channel-flow transition, for 
which detailed information on the final stages of transition is scarce apart from the 
experiments of Nishioka et al. (1981). The present work addresses this aspect of 
transition in channel flow. For a realistic representation of the underlying physical 
phenomena, the full three-dimensional time-dependent Navier-Stokes equations 
were employed in this work. Calculations were performed at a linearly stable 
Reynolds number (Re = 1500), with finite-amplitude two- and three-dimensional 
eigensolutions of the Orr-Sommerfeld equation used as the initial conditions. No 
attempt was made herein to study the effects of different initial conditions or of 
Reynolds numbers ; this is the subject of another investigation. 

In  $2 of this paper the numerical methods used in this study are briefly discussed. 
I n  $ 3  results of calculations are presented, and, whenever possible, the evolution of 
the computed flow field is compared with the experiments of Nishioka et al. (1981). 
Finally, $4 contains a summary of results and some concluding remarks. 

2. The calculation procedure 

in primitive-variable form, 
The calculation procedure is based on the imcompressible Navier-Stokes equations 

and the continuity equation, % = o ,  
axt 

where ui are the velocities along the xi directions, p is the density, v is the kinematic 
viscosity and p’ is the total hydrostatic pressure. The equations are non- 
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dimensionalized by the mean centreline velocity Uo and the channel half-width h. The 
flow is assumed to be driven by a constant mean pressure gradient 2/Re, where 
Re = u, h / v  is the Reynolds number. Also, the convective terms are written in a form 
that prevents occurrence of nonlinear instability in the numerical solution procedure 
by ensuring conservation of momentum and energy (Mansour, Perziger & Reynolds 
1978). The final form of the Navier-Stokes equations reads 

where P = p’/p ++ul u1 is the pressure head and Si, is the Kronecker delta. 
The flow is assumed to be periodic in the streamwise x, and the spanwise x, 

directions, along which the flow-field variables can be expanded in terms of Fourier 
series. This enables the use of the pseudospectral method (Orszag 1972) to calculate 
the spatial derivatives along x1 and x, by use of discrete Fourier transforms. 
Considering transforms in the x1 direction, along which there are N ,  equally spaced 
mesh points, the velocity component u, can be written as 

where x, = m Ax, (m = 0, 1 ,  . . . , N ,  - 1)  and k, = 2nn,/N, Ax,. Accordingly, the 
Fourier transform of u1 is 1 N1-1 

Nl m=o 
G,(k , )  = - x ul(xl)e-iklsl. ( 5 )  

The spatial derivative of u1 along x1 can now be written as 

The derivative can be computed by forming the Fourier transform of ul(xl), 
multiplying the result by ik, and computing the inverse transform. For periodic 
functions the pseudospectral method provides a means by which the spatial deriva- 
tives are evaluated with maximum accuracy for a given number of grid points. Along 
the x2 direction a mesh stretching that concentrates grid points close to the solid 
walls is employed (Moin, Reynolds & Ferziger 1978). The resulting mesh enables the 
resolution of the sublayer that  is formed during transition for y+ < 2, where y+ is the 
coordinate along x2, in wall units. Spatial derivatives along x2 are evaluated by a 
second-order finite-difference scheme on this non-uniform mesh. 

The governing equations were numerically integrated by the semi-implicit method 
of Moin et al. (1978). This procedure employs the explicit Adams-Bashforth method 
for the convective terms and the implicit Crank-Nicolson method for pressure and 
for the viscous-diffusion terms, so that the method is second-order accurate both in 
space and time. I n  order to start the two-time-level Adams-Bashforth method, the 
Euler-implicit method is used at the first time step. 

Once the governing equations are discretized in time, a two-dimensional Fourier 
transform along the periodic directions x, and x, transforms the equations into the 
(k,, k,) wavenumber space. The transformed equations are written below in block- 
tridiagonal form for inversion along x2 : 

(7) 

I n  (7),  A,  B, and Care coefficient matrices, T+l is the solution vector at the advanced 
time level n+ 1 and at the x2 directional node j; Rj” is the right-hand-side vector 

A q Z  + B q + l +  Cq-y = Rn j. 
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that  contains the convective, diffusive and pressure terms a t  the previous time levels. 
These are given as 

0 0 C l ,  

c2, 0 0 

0 0 C2, -ReClj 

F=[-], A = [  0 c2 ,  0 

B2j-$ 0 0 W , ) , R e  
0 B2,-$ 0 f (k , ) ,Re  

0 0 B2,-$ -ReBli 
.-[- + (k1)j f P 3 ) j  B1, 0 

0 

A2,  0 0 

0 0 Al,  
0 A 2 j  0 

0 0 A2,  -ReAIJ 
and 

R; = 0,  

also, 

and R. = x!  
3 3 '  

Coefficients of the finite-difference operators that  appear in the matrices A,  B and 
C are given as 

Since all the flow variables in the solution vector contain an imaginary and a real 
part, the block-inversion process is applied twice for each pair of k ,  and k,,  which 
are the wavenumbers along x1 and x3 respectively. 

The assumption of periodicity in x1 and x3 eliminates the necessity of applying 
explicit boundary conditions along these directions. However, owing to the presence 
of solid boundaries along the x2 direction, no-slip boundary conditions are imposed 
on ul, u2 and u3, and the pressure a t  the wall is calculated by a second-order 
approximation from the interior of the flow field. That the pressure boundary 
conditions are consistent with the x2 momentum equation a t  the wall has been shown 
by Moin et al. (1978). 
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Initial conditions were prescribed from the two- and three-dimensional eigen- 
solutions of the Orr-Sommerfeld equation by considering that, even for subcritical 
Reynolds numbers, plane channel flow can be driven to  instability if the least stable 
two-dimensional finite-amplitude Orr-Sommerfeld eigenmodes are made to interact 
with finite-amplitude three-dimensional eigenmodes (Orsag & Kells 1981). The 
most-explosive situation arises when the three-dimensional eigenmodes are aligned 
with the main flow direction a t  k45O-k 60". Accordingly, we have used the following 
Benney-Lin-type initial conditions : 

Here U(x2,  0,O) is the parabolic velocity profile of plane channel flow. The eigen- 
functions u2,(zZ) and u3,(zZ) correspond respectively to two-dimensional and three- 
dimensional solutions of the Orr-Sommerfeld equation a t  Re = 1500. The 
two-dimensional solution was obtained for a = 1, whereas the three-dimensional 
solution was obtained for a = 1, p = 1. A computer program that essentially uses 
the Kaplan filtering technique was used for the solution of the Orr-Sommerfeld 
equation (Reynolds 1967). The final amplitudes were chosen so that the maximum 
value of the x1 directional two-dimensional disturbance was set equal to 0.11 U,, and 
the maximum amplitudes of the z1 directional three-dimensional disturbances were 
each set equal to  0.05U0. Note that recent work by Herbert (1983) has shown an 
alternative path to transition in plane channel flow via three-dimensional subharmonic 
instabilities. The existence of a similar mechanism consisting of a resonant triad of 
Orr-Sommerfeld waves was found by Craik (1971) in boundary layers. However, for 
large-amplitude disturbances, Herbert (1983) finds evidence for the existence of both 
Herbert-type (characterized by the formation of a staggered system of A-vortices) 
and Benney-Lin type (characterized by peak-valley splitting) mechanisms during 
transition depending on initial conditions. The role of subharmonic instability during 
the final stages of transition is not yet understood, and could very well be the subject 
of another study. I n  this work, however, we incorporate the Benney-Lin-type initial 
conditions, which have been shown to provide a path to  transition by previous 
workers (Orszag & Kells 1980; Orszag & Patera 1981 ; Kleiser 1982; Wray & Husseini 
1984). 

3. Results and discussion 
The finite-difference system (7)  was solved on the CYBER-203 vector processor a t  

NASA/Langley Research Center. A 32 x 51 x 32 mesh was employed along the zl, x2 
and x3 directions respectively. The computer code was fully vectorized, and vectorized 
library subroutines were used for the main computational operations that the solution 
technique employs. These vector operations are mainly one-dimensional fast Fourier 
transforms (FFT) to calculate spatial derivatives with the pseudospectral method, 
two-dimensional FFT to transform the equations into ( k l ,  k , )  wavenumber space, and 
block-tridiagonal matrix inversion along x 2 .  For the FFT operations typical vector 
lengths were around 1000, which is an optimal vector length to take full advantage 
of the vector processor. For the block-tridiagonal matrix inversion (which essentially 
is a scalar operation), a vectorized subroutine that inverts a large number of 
tridiagonal systems simultaneously was used. This procedure decreases CPU time 
significantly by reducing the number of scalar operations required to invert each 
system separately. The fully vectorized code takes about 10 s of CPU time per time 
step for the 32x51 x32 mesh to solve the finite-difference system (7) on a 
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computational box in which the flow is confined between rigid walls a t  x2 = f 1. 
Periodicity lengths (box lengths) along x1 and z3 were chosen so that the smallest 
wavenumbers allowed in the computational domain were equal to a = 1 and /3 = 1 
respectively, i.e. the box length was set equal to 231 along these directions. 

It should be recalled that the time-advancing scheme employed in this work 
is partly explicit (on the convective terms) and partly implicit (on the diffusion and 
pressure terms). Although in view of linear stability analysis implicit methods are 
unconditionally stable (extrapolation to nonlinear equations is sometimes vague), the 
mixed nature of the present scheme as well as the time-accurate nature of the problem 
under investigation necessitate adherence to stability bounds of explicit schemes. 
Therefore, in all the calculations reported herein, the convective stability condition 
(the Courant-Friedrichs-Lewy condition), which requires the Courant number +? to 
be always less than one, and the diffusive stability condition were obeyed. With 
(Ax2)min = 0.0092 and AT = 0.025, where AT is the non-dimensional time step, 
through the course of the calculations +? varied as 

whereas the diffusive stability criterion D was equal to 

so that the diffusive stability condition, which requires D < 0.5, was also always 
satisfied. The computer program was tested by calculating the growth rates of 
small-amplitude Orr-Sommerfeld waves. For a wide range of Reynolds numbers 
(between 1000 and l O O O O ) ,  the agreement between the computed results and the 
linear theory was better than 0.5%. As a further test on the solution accuracy, 
calculations were reperformed after halving the time step a t  various intervals during 
the computation. For the values of +? and D as given above, the difference between 
such calculations was negligible. 

I n  the subsequent parts of this section, results obtained from the numerical 
integration of the finite-difference system (7) for the time evolution of the initial 
disturbances are compared with the experiments of Nishioka et al. (1981). It should 
be noted that there are several differences existing between the conditions of the 
experiment and the present computations. First, the periodic boundary conditions 
employed in the computations along x1 and x3 are not realized in the laboratory, where 
the flow is periodic in time. Secondly, because of periodicity, the computational flow 
evolves in time, not in space-time as in the laboratory. One justification to  the first 
difference can be advanced on the basis of previous numerical experiments : transition 
simulations of the flat-plate boundary layer (Orszag 1976) and of the plane channel 
flow (Fasel et al. 1977) with proper inflow-outflow boundary conditions gave similar 
results to those simulations in which periodic boundary conditions were used. 
Furthermore, Wray & Hussaini ( 1984) showed that their periodic boundary-layer 
simulations compared very favourably with the experiments of Kovasznay et al. (1962), 
demonstrating the absence of any important adverse effects of the artificial boundary 
conditions they employed. I n  a recent survey article, Herbert (1981) also stresses 
these similarities and advocates a more tolerant attitude towards the differences 
existing between time and space-time evolution. We share the opinion of these 
workers and expect the periodic boundary conditions of the present computations 
not to introduce any significant drawbacks for comparisons with the laboratory 
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flow. The assumption of streamwise periodicity, which implies the evolution of the 
flow in time, enables the most efficient use of available computer resolution by 
resolving only one wavelength. This assumption can be justified on the grounds that, 
in a coordinate frame moving with the phase velocity of the two-dimensional 
disturbance field, the spatial evolution of the laboratory flow is essentially equivalent 
to temporal growth. A third difference between the experiment and the computation 
is the Reynolds number. The laboratory flow has a subcritical Reynolds number 
Re = 5000, whereas the computation was done at a lower subcritical Reynolds 
number Re = 1500. The selection of a higher Reynolds number (e.g. in the linearly 
unstable range) makes the governing equations very stiff and requires the use of 
extremely small time steps for numerical stability. Hence the selection of Re = 1500 
was mainly to force the computation into transition and breakdown with the least 
amount of computer expense. It should be noted that wall phenomena characteristic 
of the final stages of transition are essentially independent of Reynolds number, as 
observed by Nishioka et al. (1981) for channel flow and by Smith & Metzler (1982) 
for boundary-layer transition. Therefore the difference between the Reynolds numbers 
of the experiment and the simulation should not have any important consequences 
for the qualitative comparisons between the two sets of results. 

In  their experiments, Nishioka et al. (1981) identified the various stages of 
transition according to the number of spikes appearing in the oscilloscope traces of 
the disturbance velocity u;. Since the time axis of the experiment is interchangeable 
with the x1 axis of the computation, we obtain similar traces by plotting ui along 
x1 (over two periods) as shown in figure 1. I n  this figure the first frame shows the 
sinusoidal variation of the initial conditions at T = 0. This is followed by the 
nonlinear distortions of the initial conditions, resulting in variations of u; which 
strongly resemble the oscilloscope traces a t  the one-, three- and five-spike stages of 
the laboratory flow. I n  particular, the variations of u; with x1 at T = 44 are very 
similar to the ensemble-averaged waveforms presented by Nishioka et al. at the 
five-spike stage. The last frame in figure 1 shows variations of ui a t  a time (T = 79) 
much later than the occurrence of the five-spike stage (T = 44). Here we note the 
absence of fluctuations of rich frequency content that  are characteristic of fully 
developed turbulence; this lends support to the idea that the last stage of transition 
may not be as spontaneous and explosive a phenomenon as generally supposed. 
However, a t  this stage, the u; variations are very similar to velocity oscillations 
observed in wave packets and indicate the occurrence of ‘patches’ of turbulent fluid. 
For the remainder of this discussion, results from the simulation a t  the spike stages 
(shown in figure 1) will be used, whenever possible, for comparisons with the 
corresponding spike stages of experiments of Nishioka et al. We have found this to 
be the more appropriate means of matching instantaneous events because of the 
difficulty in establishing appropriate length- and timescales in the laboratory flow. 
Note that the experiment is performed in such a way that the wave growth in the 
streamwise direction x1 is simulated a t  a $xed x1 position by varying the amplitude 
of the initial disturbances. 

I n  figure 2 we show a history of the time evolution of the flow in terms of the 
maximum amplitude of the two-dimensional primary disturbance, its two-dimensional 
harmonic and the three-dimensional primary disturbance. The trends displayed by 
these quantities are generally similar to the results of Orszag & Kells (1980), which 
they obtained from computations performed at H e  = 1250. The main features of these 
trends are the rapid decrease in the two-dimensional primary-wave amplitude and 
the rapid increase of the amplitude of its harmonic. Also, the three-dimensional 
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FIGURE 1.  Development of u; fluctuation in time along 2,. 

primary-wave amplitude first increases, then gradually decreases at around T = 30. 
In  the present calculations we observe that variations of the amplitudes start to 
fluctuate as early as T = 15, but, even a t  later times, the fluctuations do not display 
an explosive trend. That no 'explosive' instabilities were found in the present 
computations is in accord with the findings of Nishioka et al. (1980), which imply that 
breakdown in channel flow is as gradual as the growth of instabilities found in free 
shear flows. 

I n  figure 3 we present plots of maximum root-mean-square (r.m.s.) amplitudes of 
ul, (ulrms)max, over two periods along x3. Here we define the r.m.s. value as an 
average over xl. We note that at T = 0 the wave pattern is sinusoidal and corresponds 
to peaks a t  x3 = 0, 27c, 47t and to valleys a t  x3 = 7t, 37t. Subsequently, a t  later times 
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FIGURE 2.  Time history of maximum disturbance amplitudes : ( a )  two-dimensional primary ; 
( b )  three-dimensional primary ; ( c )  two-dimensional harmonic. 

the nonlinear distortions of the wavefront result in minima occurring a t  the peaks 
and maxima occurring a t  the valleys in accordance with the experiments of Nishioka 
et al. (1980). At later times, an increase in the frequency of the peak-valley structure 
is clearly evident, suggesting an increase in the number of characteristic vortex 
structures along x,. 

Plots of velocity profiles averaged over the (xl, 2,)-plane, (ul), are shown in figure 
4 for laminar (initial), late transition and ‘early-turbulence’ stages at T = 0 ,44  and 
79 respectively. The (u,) distribution a t  T = 79 has a strong resemblance to the 
turbulent channel-flow profile, with increased velocity gradient at the wall and with 
a full profile indicative of turbulent mixing. Note that, owing to the averaging 
process, the (u,) distributions do not exhibit any inflexions. However, the charac- 
teristic inflexional profiles are depicted in the distributions of the instantaneous 
velocity profiles (figure 5). As noted by Orszag & Kells (1980), the occurrence of such 
fluctuations (inflexions) close to the wall indicates that the nonlinear interaction of 
two- and three-dimensional waves close to the wall is the fundamental mechanism 
that drives the flow to instability. This is in accord with the idea that the flow will be 
ceceptive only to  a selected band of spanwise wavenumbers, the most ‘dangerous’ 
of which result in three-dimensional disturbances with maxima occurring close to the 
walls. I n  figure 6 the velocity profile (u’) = (ul)/u, versus y+ = x2u,/v is plotted; 
here u, is the friction velocity and is calculated from d(u,)/dx, at the wall times 1/Re. 
At T = 17 the profile follows the laminar relation U+ = y+, and the change from 
T = 17 to  T = 79 shows a gradual approach to the law of the wall. At T = 44 the 
Reynolds number based on the friction velocity is equal to 69 and, as expected, is 
larger than its initial (laminar) value of 55. 

Plots of plane-averaged fluctuation intensities ( (ul - ( U J ) ~ )  are shown in figure 
7 a t  various T. There are several interesting features of this figure. First, a t  T = 17, 
the shift in the position of peak amplitude towards the channel centre (2, = -0.6), 
as well as the increase in the maximum amplitude, indicate that the development 
of the computed flow field is compatible with experimental observations pertaining 
to the one-spike stage of the transition process (Tani 1969). It will later be shown 
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FIGURE 3. Development of the peak-valley structure in terms of maximum (u;),,,,~: 
(a )  T = 0;  ( b )  17; (c) 27; ( d )  44; ( e )  79. 

that during this stage there is a substantial increase in the spanwise vorticity w, away 
from the lower wall around x2 = -0.6. Secondly, in accordance with the laboratory 
flow of Nishioka el al. (1981) at later stages, the computed intensity profile displays 
a second peak occurring close to the wall associated with turbulence production. At 
T = 44, corresponding to  the five-spike stage, we see that peak intensity has reached 
a value typical ofturbulent channel flow ; however, the peak occurs uncharacteristically 
away from the wall. Finally, a t  T = 79, the peak in the intensity profile has moved 
towards the wall, but even a t  this stage the distribution has not assumed the 
asymptotic fully tJurbulent form. In figure 8 plots of plane-averaged shear-stress 
( (ul-(ul))  u2) profiles are shown. The increase in the magnitude of the shear stress 
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FIGURE 4. Plots of plane-averaged mean-velocity profiles: (a) T = 0; ( b )  44; (c) 79 .  
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FIGURE 5. Plots of instantaneous velocity profiles at z1 = $, x3 = in: (a)  T = 1 7 ;  ( b )  44; (c) 79 .  

from T = 0 to T = 17 clearly indicates the effects of nonlinearity in transferring 
energy from the mean flow to the fluctuating motion. At the five-spike stage (T  = 44) 
the maximum shear stress has attained a value typical of turbulent channel flow. 
However, the location of the maximum is away from the wall, and roughly 
corresponds to the location of the peak in the respective intensity profile (figure 7). 
It can thus be inferred that, a t  this stage of the computation, the energy-exchange 
mechanism of fully developed wall turbulence is not yet reflected by the plane-averaged 
velocity correlations. 

Spanwise variations of u1 are plotted a t  various distances along x2 in figures 9 (a-e). 
I n  figure 9 (a )  we show the initial distributions, which are highly three-dimensional. 
At T = 17 (figure 9 b )  the distributions indicate a velocity defect both a t  peak and 
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FIGURE 6. Plots of plane-averaged mean velocity in wall units. 
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FIGURE 7 .  Plots of plane-averaged fluctuation intensities of ul: 
(a )  T = 0; ( b )  17; ( c )  27;  (d )  44; ( e )  79. 

at valley as well as a velocity excess in between. This is indicative of intensification 
of the initial streamwise vortices and appearance of weaker streamwise vortex pairs 
in accordance with the Benney-Lin (1960) theory. Subsequently, figures 9 (c-e) 
display the formation of additional vortex pairs, indicating transport of energy down 
the wavenumber spectrum. The spanwise symmetry imposed by the initial conditions 
is retained through the five-spike stage. A t  this stage, an estimate of the flow-field 
resolution can be obtained from the spanwise distance A, between peak positions. 
Non-dimensionalized by u, and Y, typically A, = 115. This is larger than but 
comparable to A = 80, which is the typical spanwise length in the laboratory flow 
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FIGURE 8. Plots of plane-averaged shear stress: (a) T = 0 ;  ( b )  17;  (c) 44. 

during the five-spike stage (Nishioka et aE. 1981). It should be noted that the spanwise 
characteristic length in wall turbulence is about 100. Therefore i t  could be asserted 
that a t  this stage the present results are representative of initial wall turbulence. 

A more detailed description of the transition process can be obtained from con- 
tour plots of equishear lines aul/i3x2 (which correspond to approximate spanwise 
vorticity w z )  in the (x,,x,)-plane at  the position of maximum ul/Uo. Results from 
the computation that correspond to the various stages of the laboratory flow are 
presented in figures 10-15 between the lower wall (x2 = - 1 .O) and the channel centre 
(2, = 0).  In figures 11 (a)-13(a), figures 4-6 of Nishioka et al. (1981) are also shown 
for a qualitative comparison with the present results. In figure 10 contour plots 
corresponding to the initial conditions and in figure 11 contour plots corresponding 
to the ‘one-spike’ stage (T = 0 and T = 17 respectively) are shown. In both the 
laboratory flow and the computation, the typical head of the shear layer appears very 
clearly at the one-spike stage, indicating the formation of a shear layer away from 
the wall a t  about x, = -0.6 due to the induced velocity from the streamwise vortex 
system. In addition, the sudden dip of the shear layer from the high-velocity outer 
flow to  the low-velocity region clearly appears as a kink in both the computation and 
the laboratory flow. Since the grid points are finely clustered along x, close to the 
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FIGURE 10. Contour plots of aul/ax, a t  T = 0 in the (q, 2,)-plane; 
contours from - 4 . M . 2 .  Flow direction is from left to right. 

wall, vorticity concentrations in this region are also adequately resolved by the 
numerical simulation. 

Figure 12 shows equishear lines a t  T = 27, corresponding to the three-spike stage 
of the laboratory flow. Owing to the secondary instability manifested in the previous 
stage, breakdown of flow structures into smaller scales is observed in both the 
experiment and the computation. The growth of the kinked portions of the equishear 
lines into the so-called 'hairpin eddies' is clearly depicted in the experiment. The 
Computation displays a similar evolution: the head of the shear layer is lifted up 
towards the channel centreline, and the kink in the shear layer is quite apparent in 
this stage of the simulation. Simultaneously, with this activity taking place in the 
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FIGURE 11. Contour plots of du,/i3x2: ( a )  One-spike stage, figure 4 from Nishioka et al. 
( b )  computations a t  T = 17 in the (x,, r,)-plane, contours from -0.2-2.6. Flow direction 
left to right. 

(1981 ) ; 
is from 

outer (high-speed) portions of the flow field, both the experiment and the computation 
show an intense shear layer developing close to the wall, which is indicative of 
turbulence generation. It is generally agreed that hairpin eddies that are lifted 
towards the centreline erupt into turbulent spots. However, figure 12 indicates that  
wall turbulence may also be closely associated with vorticity dynamics simultaneously 
taking place with the eruption of hairpin eddies. Contours of equishear lines a t  T = 44, 
corresponding t o  the five-spike stage of the experiment, are shown in figure 13. In  
both the experiment and the computation, the intense shear layer developed in the 
wall region is clearly discernible. It should also be noted that the spanwise position 
of maximum o, appears very close to  the wall and does not necessarily coincide with 
the spanwise location of maximum u J U o  where the contours are presented. The most 
significant feature of figure 13 is the existence of distinct vortex structures in the wall 
region in both the laboratory flow and the computation. These vortices are inclined 
to  the main flow direction at an  angle that varies between approximately 14O4Oo and 
show a close resemblance to the energetic horseshoe vortices characteristic of initial 
wall turbulence (Hama & Nutant 1963; Klebanoff et al. 1962). It is these vortices 
roughly aligned along the direction of maximum extensional stress that  are mainly 
responsible for extracting energy from the mean shear (Tennekes & Lumley 1972). 

In  figure 14 equishear lines at spanwise locations x3 = ( X ~ ) ~ + ~ A X ~  and 
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FIGURE 12. Contour plots of au,/ax,: (a )  three-spike stage, figure 5 from Nishioka et al. (1981); 
(b) computations at  T = 27 in the (z,, 2,)-plane, contours from 0.3-6.8. Flow direction is from left 
to  right. 

x, = ( X , ) ~ + ~ A X ,  at T = 44 are compared. Here we define ( x , ) ~  as the spanwise 
position corresponding to figure 13, and Ax, is the mesh size along x3. Figure 14 
suggests that  the shear layer is formed from a system of horseshoe vortices in succes- 
sion such that, as the first-born vortex erupts into the channel centre, a new one 
forms a t  the wall. As evidenced in figure 5 ,  the vortex lift-up is still clearly discernible 
a t  the ‘early-turbulence’ stage T = 79. Here we note the vortex lift-up towards 
the channel centre, but its extension is considerably shorter than that observed 
previously a t  the five-spike stage. This variance suggests the existence of different 
vortex structures characteristic of these two stages. In  fact, we shall show later that  
the typical horsehoe vortex of late transition is not the basic structure of early 
turbulence. 

The above comparisons reveal a close similarity between the present results and 
the experiments of Nishioka et al. (1981), lending justification to the use of the 
time-evolving computed flow field as a supplement to the space-time-evolving 
laboratory flow. As a step in this direction, we now examine the behaviour of various 
flow-field quantities that were not measured in the experiment. In  figures 16-20 we 
show contours of wl. (streamwise vorticity) and wz (spanwise vorticity) a t  various 
instances in time. The contours in the (xl, 2,)-plane are a t  x2 = - 0.99, corresponding 
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FIGURE 13. Contour plots of au,/ax,: (a )  five-spike stage, figure 6 from Nishioka et al. (1981); 
(b )  computations a t  T = 44 in the (zl, z,)-plane, contours from 0 7-7.0. At this spanwise position 
we define z3 = (z&. Flow direction is from left to right. 

to  the first computational point away from the lower wall. Figure 16 displays the 
counter-rotating vortex pairs due to  the prescribed initial conditions with strength 
considerably weaker than the initial spanwise vorticity. Figure 17 (a)  shows contours 
of 0% a t  T = 17, corresponding to  the one-spike stage. At this stage the initial 
counter-rotating vortex pairs are still evident. Also apparent is the significant amount 
of vorticity production by stretching of w, a t  an angle of about 30" to the x1 direction, 
roughly corresponding to maximum extensional stress in the (xl, x,)-plane. Note that 
vorticity dynamics is governed by the vorticity-transport equation, which reads 
(Tennekes & Lumley 1972) 

(11) 
awi awi - au. a Z w i  
-+u.- - O.L+-----. 
at 3 axj 2 axj axjaxj 

I n  this equation the first term on the right represents stretching (production) of 
vorticity by the instantaneous shear. I n  the (xl, x,)-plane the dominant shear 
term is au,/ax,, and the major contribution to  the production of w, is supplied by 
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FIGURE 14. Contour plots of in the (xl,z2)-plane at T = 44; (a) x$ = (z3),+2Az3; 
( b )  z3 = + 4 Ax3. Here Ax3 is the mesh size along z3. Flow direction is from left to right. 

the stretching term w,au,/ax,; this is clearly in accordance with figure 17(a). I n  
figure 17 ( b )  w, contours are shown in the same x2 plane as in figure 17 (a ) .  Here the 
formation of A-shaped vortices a t  the peaks corresponding to x3 = 0 and x3 = 2n are 
clearly depicted. According to Hama & Nutant (1963), the formation of a A-shaped 
vortex comprises the intermediate step during the evolution of the nonlinear distor- 
tions of spanwise vorticity into a horseshoe vortex. An intriguing possibility is now 
suggested by a comparison of figures 17(a) and ( b ) :  the strong correspondence 
between the spanwise positions of high concentrations of w, and w, makes i t  plausible 
to  interpret w, as the ‘footprints ’ of the A-shaped vortices, not unlike the structures 
suggested by Perry et al. (1981). I n  figures 17 (c, d )  contours of ox in the (x2, x3) plane 
a t  the position of maximum u J U ,  are shown a t  T = 0 and T = 17 respectively. 
I n  accordance with the Benney-Lin (1960) theory, figure 17(d) shows the inital 
system of counter-rotating vortices doubling their frequency. The increase in the 
magnitude of w, is also apparent in this figure. 
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FIGURE 15. Contour plots of au,/ax, in the (xl, 2,)-plane at  T = 79. Contours 
from 0.266.25. Flow direction is from left to right. 

0 2n 

FIQURE 16. Contour plots of w, in the (q, 2,)-plane at  T = 0. Contours from 
XI 

-0.2 x 10-2-0.2 x Flow direction is from left to right. 

I n  figures 18 (a ,  b )  contour plots of w, and w, are presented a t  the three-spike stage 
in the (xl, z3)-plane, at x2 = -0.991. Figure 18(a) displays the initial vortex pair still 
stretched a t  an angle of about 30" to the x1 axis. Also shown in this figure are newly 
formed vortex pairs that have decreased lengthscales and that are aligned with the 
x1 axis. The alignment of vortex pairs with x1 (rather than the direction of maximum 
extensional stress indicating vorticity production) suggests that  w, has attained a 
value high enough to  enhance the effects of viscous dissipation. This may appear 
implausible a t  first, since the frequency spectrum of the velocity field is not yet fully 
developed; consequently, the dissipation rate of fluctuation energy is slow. But if we 
note that the spectrum of vorticity (defined in terms of velocity gradients) has a much 
steeper gradient than the spectrum of the velocity, and consequently vorticity 
dissipation is shifted to lower frequencies, then at this stage the action of viscous 
dissipation can be expected to be more pronounced and detectable on vorticity than 
on the velocity field. Figures 18(a, b )  also show that the spanwise positions of w, and 
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( b )  
FIGURE 18. Vorticitg contours in the (s,,z,)-plane a t  T = 27;  (a )  w,, contours from -7.2-7.2; 
( b )  w,, contours from - 1.0 to 7.5. Note that high concentrations of ut and wz appear a t  roughly 
the same position. Flow direction is from left to right. 

w, concentrations are almost juxtaposed as observed previously in figures 17 (a ,  b ) ,  
supporting the idea that w, can be interpreted as the footprints of the vortex loop. 
As inferred from these figures, the characteristic dimension of the A-shaped vortices 
a t  the peaks corresponding to x3 = 0 and x3 = 27t are reduced along both x1 and x3. 
This is most likely due to the formation of horsehoe vortices that are narrower 
along x3 and are elevated with respect to the (xl,x2)-plane; similar trends are dis- 
played in figures 19 (a ,  b )  a t  T = 44, corresponding to  the five-spike stage. I n  figure 20 
details of w, contours in the vicinity of the lower wall are shown in the region 
between the lower wall (x2 = - 1 .O) and x2 = -0.92. Here the most interesting aspect 
is the existence of distinct patterns of alternating pairs of positive and negative 
vorticity. Note that high concentrations of streamwise vorticity in this figure exist 
a t  the same x3 location as in figure 19. As explained above, alternating pairs of 
streamwise vorticity are associated with the induced velocity field responsible for the 
distortion and production of spanwise vorticity, and seem to form the extensions of 
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FIGURE 19. Vorticity contours in the (xl, x,)-plane a t  T = 44: (a )  wz, contours from -5.G56; 
( 6 )  w,, contours from 0 to 8.5. Flow direction is from left to right. 
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FIGURE 20. Contour plots of w, in the (x2, r,)-plane in the vicinity of the lower wall a t  T = 44. 
Contours from -5 .G5.6.  Flow direction is into the (x2, z,)-plane. 
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FIGURE 21. Schematic of the horseshoe-vortex system. The angle 0 
typically varies between 14' and 40'. 

the horsehoe vortices. The pressure field associated with this vortex system is 
discussed by Biringen & Maestrello (1984), indicating flow-field structures evolving 
in a manner consistent with the observations of Carlson, Widnall & Peeters (1982) 
in their flow-visualization experiments. Based on these observations, it now seems 
plausible to suggest that  the main element of the nonlinear transition process during 
the final stage is a system of horseshoe vortices with extensions or 'footprints' in the 
(xl, %,)-plane. A schematic of this system of vortices is given in figure 21. This concept 
is similar to the structures inferred by Head & Banyopadhyay (1981) from flow 
visualization in a turbulent boundary layer. 

The characteristic vortex structures in the wall region during the early-turbulence 
stage (T = 79) are shown in figures 22(a, b ) .  There is a striking difference between 
the sublayer structuresexisting a t  this stage and the horseshoe vortices of the five-spike 
stage. First, the strength of the streamwise vortices is now reduced to approximately 

of the mean spanwise vorticity and, secondly, their typical streamwise length has 
reached a value of A, z 300-400 in wall units. The typical length of spanwise vorticity 
is also elongated along xl, whereas the correspondence between the spanwise locations 
of high concentrations of w, and w, is not as strong as in the previous stages. I n  
figure 23 w, contours a t  the early-turbulence stage are shown in the vicinity of the 
lower wall. The existence of a fluctuating array of counter-rotation vortices covering 
the entire lower wall is apparent in this figure. I n  summary, the streamwise structures 
of the early-turbulence stage manifest a close resemblance to the characteristic 
near-wall structures of fully developed turbulence. Note that the main element of the 
organized structure of the near-wall turbulence is a system of counter-rotating 
streamwise vortices with A, 100 and of strength about one order of magnitude less 
than the mean spanwise vorticity (Cantwell 1981). Hence, even though the 
Theodorsen-type horseshoe vortices seem to form the basic elements of late transition, 
the existence of these structures in the early-turbulence stage is not evidenced from 
the present results. 

As we have noted before, the mechanism that is responsible for the generation of 
vorticity concentrations is explained as vortex stretching (and deformation) by the 
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FIGURE 22.  Vorticity contours in the (z,,z,)-plane at T = 79: (a )  wz,  contours from -1.2-1.2; 
(b )  wz, contours from O . M . 6 .  Note the elongation t o  the vortex structures along zl. Flow direc- 
tion is from left to  right. 

-0.92 

x2 

- 1.0 
0 2n 

x3 

FiauRE 23. Contour plots of wz in the (s,,.c,)-plane at T = 79 in the vicinity of the lower wall. 
Contours from -0.9-0.9. Flow direction is into the (z2, 2,)-plane. 
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FIGURE 24. Contour plots of u1 in the (zl, 2,)-plane at  T = 27. Contours from 
0 to 1.02. Flow direction is from left to right. 
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FIGURE 25. Contour plots of u1 in the (z,, 2,)-plane at  T = 44. Contours from 
0 to 1.02. Flow direction is from left to right. 

XI 

mean flow. The stretched and deformed layer moves downstream with a transla- 
tion velocity that induces a lower local velocity of the upstream edge of the vorticity 
layer than of its downstream edge (Komoda 1967). An examination of u1 contours 
(figures 24 and 25) along with the approximate spanwise vorticity contours a t  T = 27 
(figure 12b) and a t  T = 44 (figure 13b) in the (x,,x,)-plane clearly shows a similar 
trend. We observe that the nose of the vorticity layer is generally associated with 
higher velocities than the upstream region, and large variations of the local velocity 
exist within the layer. 

Finally, in figures 26 and 27, normal velocity contours are shown in the (x2, 2,)-plane 
at T = 44 and T = 79, corresponding to the multispike and early-turbulence stages 
respectively. These contours, plotted in the region between the lower wall (xz = - 1 .O) 
and x2 = -0.92, display the evolution of alternating structures very similar to the 
characteristic streaklike near-wall structures observed in turbulent boundary layers 
(e.g. Kline et al. 1967) and recently simulated numerically in turbulent channel flows 
(Moin & Kim 1982). 
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FIGURE 26. Contour plots of u2 in the (z2, r,)-plane at  T = 44. Contours 
from -0.Os-O.08. Flow direction is into the (z2, z,)-plrtne. 
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FIGURE 27. Contour plots of u2 in the (r2, 2,)-plane at  T = 79. Contours from 
-0.06-0.06. Flow direction is into the (z2, 2,)-plane. 

4. Summary and concluding remarks 
In  this study, final stages of transition to turbulence in plane channel flow have 

been simulated by a direct numerical solution of the Navier-Stokes equations. It is 
found that, in spite of the limited resolution of the 32 x 51 x 32 grid employed in the 
computations, the simulation is capable of reproducing most of the essential features 
of wall phenomena observed in the laboratory. Grid resolution in the x1 and x3 
directions, along which the flow is periodic, is found to be adequate to capture the 
sequence of events that lead to early turbulence. Vorticity contours in the vicinity 
of the lower wall indicate formation of a system of horseshoe vortices with legs or 
extensions in the (z,, x,)-plane composed of counter-rotating streamwise vortex 
pairs. This picture is compatible with the observations of Hama & Nutant (1963) in 
boundary-layer transition. It is interesting to note that this vortex structure seems 
to be characteristic only of late transition. I n  the early-turbulence stage, however, 
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the vortex structures nearest the wall are not unlike the elongated streamwise vortex 
pairs typical of wall-bounded turbulent flows. Our findings are also in accord with 
the Benney-Lin (1960) theory, e.g. the present computations clearly depict frequency 
doubling of streamwise vorticity. It should be noted that the initial conditions used 
in this work are of the Benney-Lin type and consist of a vorticity field with a strong 
spanwise component and weak streamwise and transverse components. Therefore the 
question of the origin of streamwise vorticity and its precise relation to distortions 
of spanwise vorticity remain to be addressed in future work. 

At later stages of the computation, transverse velocity contours indicate the 
formation of streaklike structures alternating in the spanwise direction. Typically, 
the spanwise characteristic length of these vortices, inferred from the spanwise 
variations of ul, was found to be A, % 115 ; this is close to  A, = 100 of fully developed 
wall turbulence. It was found that, during the later stages of transition, flow-field 
statistics indicate the formation of a laminar sublayer ; however, the development 
of the logarithmic region and consequently the approach to fully developed turbulence 
is slow. This gradual approach to steady state is also reflected in the profiles of 
plane-averaged intensity and shear stress. 

The main deficiency of this study stems inevitably from limited spatial resolution, 
and manifests itself in several ways. First, a t  later stages of the computation (e.g. 
past the early-turbulence stage), insufficient mesh resolution results in lower gradients 
of the mean velocity in the viscous sublayer. This, in turn, causes less turbulence 
production in the wall region, as evidenced by the absence of peaks in the intensity 
and shear-stress profiles close to  the wall. Secondly, the finite cut-off wavenumbers 
along x1 and x3 prevent the formation of a fully turbulent wavenumber spectrum. 
This is not surprising when we consider that ,  in order to  obtain self-sustaining (fully 
developed) turbulence, a direct numerical simulation requires a computational grid 
fine enough to resolve the smallest (dissipative-Kolmogorov) scales of motion. The 
ratio of the large scales to the Kolmogorov scales can be obtained via dimensional 
considerations, and reads L/q = (Re,)$. In the present work (Re,): is 241, and 
consequently a computational grid of 241 x 241 x 241 is required to  simulate self- 
sustaining turbulence at Re = 1500. The available resolution used in the present 
work, i.e. the 32 x 51 x 32 grid, is adequate to simulate transition through the early- 
turbulence stage without significant pollution of the Fourier modes, as can be 
inferred from the one-dimensional spectra of the wall pressure (Biringen & Maestrello 
1984). Simulation of transition beyond this stage and obtaining fully developed 
turbulence, however, necessitates the use of either higher grid resolution or the 
incorporation of a mechanism to account for subgrid-scale turbulence. 

This work was supported by NASAlLangley Research Center under Grant 
NAG-1-228. The author is indebted to J. H. Ferziger, L. Maestrello, P. Moin and 
W. C. Reynolds for helpful discussions, and to P. J. Bobbitt and W. D. Harvey for 
their interest during the course of this work. 
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